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ABSTRACT

The present paper analyses the problem of laminar �ow in a porous
channel with velocity slip using novel Computer Extended Series (CES)
and Homotopy Analysis Method (HAM). The semi-numerical scheme
described here o�er some advantages over solution obtained by using
traditional methods such as regular perturbation, shooting method etc.
These techniques also reveal the analytic structure of the solution func-
tion. The objective is to study the in�uence of non-zero tangential slip
velocity on velocity �eld and pressure gradient. Domb-Syke plot and
h-curves enable us in obtaining the domain and rate of convergence of
the series generated, which are further increased by Padé approximants.
The solution presented here is valid for much larger Reynolds number for
di�erent derived quantities compared with earlier �ndings by Singh and
Laurence (1979).

Keywords: Computer Extended Series, Homotopy Analysis Method,
Velocity slip coe�cient, Domb-Syke plot, h−curve.
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1. Introduction

The problem of �uid �ow in channels and tubes have received considerable
attention in recent years, owing to its application in biological and engineering
problems. Berman (1953) was the �rst researcher who studied the problem
of steady �ow of an incompressible viscous �uid through a porous channel
with rectangular cross-section, when the Reynolds number is low. Yuan (1956)
extended the problem of two dimensional steady state laminar �ow in channels
with porous walls for the case of various values of suction and injection Reynolds
numbers. Sellars (1955) extended the problem studied by Berman for large
positive Reynolds number.

Later Yuan (1956) extended the same problem for large negative values of
Reynolds number. Terrill (1964) extended Berman's problem and obtained a
more accurate numerical solution for fourth order non-linear di�erential equa-
tion. Following researchers Terrill (1969), Brady (1984), Robinson (1976), Cox
(1991), King and Cox (2001) have extended Berman's problem and obtained
the solution for large values of suction and injection. In the previous analysis
of �ow in porous channels majority have used no slip boundary conditions.

The experiments reported by Beavers and Joseph (1967) proved the ex-
istence of slip velocity at porous boundaries. The historical background to
Beavers-Joseph conditions at the interface of porous media and clear �uid were
reported by Nield (2009). Singh and Laurence (1979) obtained analytic ex-
pression for the velocity pro�le and pressure drop in the study of laminar �ow
through porous channels for small values of Reynolds number.

In this manuscript we re-investigate the problem of laminar �ow in a porous
channel with velocity slip (Singh and Laurence (1979)). In the present work
we attempt to study the e�ect of non-zero tangential slip coe�cient on the
velocity �eld, pressure gradient using two novel techniques CES and HAM and
present some useful, interesting results.

In the �rst method, we use Computer extended series (CES) method to
solve the governing equations for moderately large wall Reynolds number R
and generate large number of universal polynomial coe�cient functions us-
ing MATHEMATICA and Domb-Syke's plot reveals convergence of the series.
Van Dyke (1974, 1975, 1984) pioneered the use of computer extended series
analysis in computational �uid dynamics. In an earlier study Bujurke et al.
(2005, 1996) also successfully used this method. In the second method, we
employed Homotopy Analysis Method for the solution of governing equation.
Liao (1992) proposed the general analytic method for the solution of non-linear
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di�erential equations. Siddheshwar (2010) has used this technique to solve
Ginzburg-Landau Equation with a time periodic coe�cient. HAM provides
an e�cient solution with high accuracy and unlike perturbation method it is
independent of very small or large physical parameters. The domain and rate
of convergence is found by a proper choice of the auxiliary parameter h using
h−curve. Finally, Padé approximants of various order give converging sum for
su�ciently large Reynolds number.

An outline of the rest of this paper is as follows. In section 2 a brief
mathematical formulation of the proposed problem is explained. Section 3
is devoted to approximate solution of the problem by Computer Extended
series and Homotopy analysis method and in section 4, we compare the results
obtained and discussed the in�uence of slip coe�cient on velocity pro�les and
pressure gradient for di�erent Reynolds number.

2. Mathematical Formulation

Consider a laminar �ow of an incompressible viscous �uid between two
plane parallel porous boundaries. It is assumed that the width of the channel
is very large relative to height, thus the �ow is assumed to be two dimensional
and steady. We choose a Cartesian coordinate system (x, y) where x axis is
in a plane parallel to channel walls and y axis is perpendicular it(Fig.1). The
distance between wall is taken to be 2h and channel length is L. The �ow is
symmetrical about the mid plane of channel of half thickness h. Under the as-
sumed condition and choice of axes, the relevant equations of linear momentum
(Navier -Stokes equations) and continuity are,

u
∂u

∂x
+
v

h

∂u

∂λ
= −1

ρ

∂p

∂x
+ v

(
∂2u

∂x2
+

1

h2
∂2u

∂λ2

)
(1)

u
∂v

∂x
+
v

h

∂v

∂λ
= − 1

ρh

∂p

∂λ
+ v

(
∂2v

∂x2
+

1

h2
∂2v

∂λ2

)
(2)

∂u

∂x
+

1

h

∂v

∂λ
= 0 (3)

where λ = y
h is the dimensionless variable.
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Porous Boundary

Porous Boundary

𝝀

Figure 1: Schematic diagram of the problem

The requisite boundary conditions are,

u(x,±1) = −k
1/2

αh

(
∂u

∂λ

)
,(

∂u

∂λ

)
λ=0

= 0,

v(x, 0) = 0,

v(x,±1) = vw = constant.

(4)

The slip coe�cient is given by relation φ = k1/2

αh α is a dimensionless constant
which depends on the porous membrane and k is permeability. Following the
procedure of Berman (1953), for constant wall velocity vw, a suitable stream
function ψ is chosen as,

ψ(x, λ) = [hū(0)− vwx] f(λ)

where U(0) is an arbitrary velocity at x = 0.

The velocity components are given by

u(x, λ) =
1

h
[hū(0)− vwx] f ′(λ) (5)

v(λ) = vwf(λ) (6)

In these equations f(λ), is some function of the distance parameter λ, which is
to be determined.

Substituting Eq.(5) and Eq.(6) into the equations of motion Eq.(1) and
Eq.(2), results in following equations,

−1

ρ

∂p

∂x
=

[
ū(0)− vwx

h

]{
−vw
h

[f ′2 − ff ′′]− v

h2
f ′′′
}
, (7)
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− 1

hρ

∂p

∂λ
=

v

h

∂v

∂λ
− v

h2
∂2v

∂λ2
. (8)

On eliminating the pressure p and simplifying, we get

d

dλ

{
−vw
h

[f ′2 − ff ′′]− v

h2
f ′′′
}

= 0.

After di�erentiation, we have,

f ′′′′ +R(f ′f ′′ − ff ′′′) = 0. (9)

The new boundary conditions are

f ′(1) = −φf ′′(1);

f ′′(0) = 0

f(0) = 0;

f(1) = 1.

(10)

Eq.(9) is one of the Falkner-Skan family of equations. Analytical solutions for
homogeneous counterpart of classical Falkner-Skan equation have been found
by many authors Yang and Chien (1975), Brauner et al. (1982), Sachdev et al.
(2008), Kudenatti et al. (2017). Eq. (9) along with boundary condition (10)
is solved by a �rst order regular perturbation method by Singh and Laurence
(1979), which is valid only for small R. This approach fails for any arbitrary R.
The proposed series solution o�ers an attractive alternative approach and also
the terms of this series method are capable of providing results to any desired
degree accuracy for any moderately arbitrary R.

3. Method of Solution

3.1 Computer Extended Series

For the analysis of perturbation series we need su�ciently large number of
coe�cients in polynomial functions. Manually it is di�cult to calculate beyond
�rst order term as it involves complex algebraic calculations. Towards this goal,
we consider solution of Eq.(9) in power series of R as,

f(λ) = f0(λ) +

∞∑
n=1

Rnfn(λ). (11)
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Substituting (11) in (9) and equating various powers of R on both sides, we
get,

f
′′′′

n =
( n−1∑
r=0

frf
′′′
n−1−r − f ′rf ′′n−1−r

)
, n = 1, 2, 3, ... (12)

and the relevant boundary conditions are,

f0(1) = 1,

f ′n(1) = −φf ′′n (1),

f ′′n (0) = fn(0) = 0,

fn(1) = 0, for n ≥ 1.

(13)

We solve Eq.(12) recursively using MATHEMATICA and able to generate
universal polynomial functions (fn(λ), n = 0, 1, 2, 3, . . . , 30) for di�erent values
of slip coe�cient φ.

The solutions to the above equations, up to the term in R are (Singh and
Laurence (1979)):

f0(λ) = − 0.5λ3

3φ+ 1
+

3λφ

3φ+ 1
+

1.5λ

3φ+ 1
,

f1(λ) = −0.0107143λ7φ

(3φ+ 1)3
− 0.00357143λ7

(3φ+ 1)3
+

0.075λ3φ

(3φ+ 1)3
+

0.0107143λ3

(3φ+ 1)3

− 0.0642857λφ

(3φ+ 1)3
− 0.00714286λ

(3φ+ 1)3

Velocity pro�les:

From Eq. 5 and 6, expressions for velocity pro�le in the axial and transverse
directions are,

U =
u

ū0
=
(

1− 4R

Re

x

h

)[
f ′0(λ) +

∞∑
n=1

Rnf ′n(λ)
]

(14)

V =
v

vw
= f0(λ) +

∞∑
n=1

Rnfn(λ) (15)

Also, we have obtained the Normalized axial velocity component as,

us =
u

ū
= f ′(λ) =

[
f ′0(λ) +

∞∑
n=1

Rnf ′n(λ)
]

(16)
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For Normalized slip velocity we have,

u0s =
(u
ū

)
y=h

(17)

Pressure gradient:

From (5, 6) and (9), an expression for Normalized pressure gradient P along
the channel length is derived as,

P =
−2CP
Re

[x
h
− 2R

Re

(x
h

)2]
(18)

where CP (integrating constant) obtained as,

CP = f ′′′(0) =

∞∑
n=0

Rnf ′′′n (0) =

∞∑
n=0

Rnan (19)

Coe�cients of the above series (14) and (18) are decreasing in magnitude.
We used Domb-Sykes plots to �nd the nature of nearest singularities which
restricts convergence of the series. Validity of the series is further increased by
Padé approximants which gives a converging sum for su�ciently large value of
R.

3.2 Homotopy Analysis Method

To compare the obtained solutions we solve the problem by Homotopy anal-
ysis method. All perturbation techniques are based on small parameters so that
at least one unknown must be expressed in a series of small parameters. Unlike
perturbation methods, the HAM is independent of any small physical param-
eters. By using HAM we can transfer a non-linear problem into an in�nite
number of linear sub-problems. The HAM provides a convenient way to guar-
antee the convergence of series solution in conjunction with Padé sum, so that
it is valid even if non-linearity becomes rather strong as compared to all other
analytic methods.

Zeroth-order deformation problem

We seek solution of Eq.(9) by using HAM given by Liao (2004, 2012). We
choose the base function to express f(λ). The initial guess is written as,

f0(λ) = − λ3

2(3φ+ 1)
+

3λφ

3φ+ 1
+

3λ

2(3φ+ 1)
(20)

Malaysian Journal of Mathematical Sciences 429



Ashwini B., N. N. Katagi and A. S. Rai

and auxiliary linear operator is de�ned as,

L[f ] = f ′′′′ (21)

The above linear operator satisfying the following property,

L[C1
λ3

6
+ C2

λ2

2
+ C3λ+ C4] = 0

where C1, C2, C3 and C4 are constants to be determined. If q ∈ [0, 1] then the
zeroth order deformation problem can be constructed as,

(1− q)L[f(n, q)− f0(λ)] = qhH(λ)N [f(λ, q)] (22)

subject to boundary conditions,

f(0, q) = 0

f(1, q) = 1

f ′(1, q) = −φf ′′(1, q)
f ′′(0, q) = 0

(23)

where 0 ≤ q ≤ 1 is an embedding parameter, h and H are non-zero auxil-
iary parameter and auxiliary function respectively. Further, N is a non-linear
di�erential operator de�ned as,

N [f(λ, q)] =
∂4f(λ, q)

∂λ4
+R

∂f(λ, q)

∂λ

∂2f(λ, q)

∂λ2
−R∂

3f(λ, q)

∂λ3
(24)

For q = 0 and q = 1, Eq.(22) has solution,

f(λ, 0) = f0(λ)

f(λ, 1) = f(λ)
(25)

As q varies from 0 to 1, f(λ, q) varies from initial guess f0(λ) to exact solution
f(λ). By Taylor's theorem, Eq.(25) can be expressed as

f(λ, q) = f0(λ) +

∞∑
m=1

fm(λ)qm (26)

where, fm(λ) = 1
m!

∂mf
∂qm

∣∣∣∣∣
q=0

. Convergence of the above series (26) depends on

the convergence control parameter h, which is chosen in such a way that (26)
is convergent at q = 1. Then we have,

f(λ) = f0(λ) +

∞∑
m=1

fm(λ) (27)
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mth-order deformation problem

Di�erentiating the zeroth order deformation problem equation (22) `m'
times with respect to q and lastly setting q = 0. The resulting mth order
deformation problem becomes,

L[fm(λ)− χmfm−1(λ)] = hH(λ)<m(λ) (28)

and the homogeneous boundary conditions are,

fm(0) = 0, fm(1) = 0, f ′m(1) = −φf ′′m(1), f ′′m(0) = 0 (29)

where

<m(λ) = f ′′′′m−1 +R

m−1∑
n=0

[f ′nf
′′
m−n−1 − fnf ′′′m−n−1] (30)

and

χm =

{
0, m ≤ 1

1, m > 1
(31)

We used Mathematica software to solve the system of linear equations (28)
with appropriate boundary conditions (29) and obtain the solution as follows,

f1(λ) = R

(
λ7

(
3hφ

280(3φ+ 1)3
+

h

280(3φ+ 1)3

)
+ λ3

(
−

3hφ

40(3φ+ 1)3
−

3h

280(3φ+ 1)3

)
+λ

(
9hφ

140(3φ+ 1)3
+

h

140(3φ+ 1)3

)) (32)

f2(λ) = λ11
(

3h2R2φ2

30800(3φ+ 1)5
+

h2R2

92400(3φ+ 1)5
+

h2R2φ

15400(3φ+ 1)5

)
+ λ9

(
−

3h2R2φ3

560(3φ+ 1)5

−
h2R2φ2

160(3φ+ 1)5
−

h2R2φ

420(3φ+ 1)5
−

h2R2

3360(3φ+ 1)5

)
+ λ7

(
9h2R2φ2

2800(3φ+ 1)5

+
3h2R2φ

1960(3φ+ 1)5
+

3h2R2

19600(3φ+ 1)5
+

27h2Rφ3

280(3φ+ 1)5
+

27h2Rφ2

280(3φ+ 1)5

)
+ λ7

(
9h2Rφ

280(3φ+ 1)5
+

h2R

280(3φ+ 1)5
+

27hRφ3

280(3φ+ 1)5
+

27hRφ2

280(3φ+ 1)5

+
9hRφ

280(3φ+ 1)5
+

hR

280(3φ+ 1)5

)
+ λ3

(
9h2R2φ3

140(3φ+ 1)5
+

51h2R2φ2

1400(3φ+ 1)5

+
73h2R2φ

7700(3φ+ 1)5
+

73h2R2

107800(3φ+ 1)5
−

27h2Rφ3

40(3φ+ 1)5
−

153h2Rφ2

280(3φ+ 1)5

)
+ λ3

(
−39h2Rφ

280(3φ+ 1)5
−

3h2R

280(3φ+ 1)5
−

27hRφ3

40(3φ+ 1)5
−

153hRφ2

280(3φ+ 1)5

−
39hRφ

280(3φ+ 1)5
−

3hR

280(3φ+ 1)5

)
+ λ

(
−

33h2R2φ3

560(3φ+ 1)5
−

2063h2R2φ2

61600(3φ+ 1)5
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−
703h2R2φ

80850(3φ+ 1)5
−

703h2R2

1293600(3φ+ 1)5
+

81h2Rφ3

140(3φ+ 1)5

)
+ λ

(
9h2Rφ2

20(3φ+ 1)5

+
3h2Rφ

28(3φ+ 1)5
+

h2R

140(3φ+ 1)5
+

81hRφ3

140(3φ+ 1)5
+

9hRφ2

20(3φ+ 1)5

+
3hRφ

28(3φ+ 1)5
+

hR

140(3φ+ 1)5

)
(33)

Convergence of HAM

The series (27) contains the auxiliary parameter h which is known as con-
vergence control parameter and it in�uences the convergence rate and region
of the series. To ensure that this series converges, we need to choose proper
value for h. To obtain the permissible ranges of the parameter h, h-curves are
plotted (Fig. 9).

4. Results and Discussion

The problem of laminar �ow in a channel of porous walls with velocity slip is
studied using two novel semi-numerical and Semi-analytical methods:computer
extended series method and Homotopy analysis method (HAM). The motion of
�uid is governed by a nonlinear ordinary di�erential equation (9) with boundary
conditions (10).

Using recurrence relation and MATHEMATICA we generate large number
(n = 30) of universal polynomial functions fn(λ) for di�erent slip coe�cients φ.
This enables one in obtaining large number of universal polynomial functions
fn(λ) for di�erent slip coe�cient φ. The series (14)-(15) representing velocity
pro�les are analyzed using Padé approximants for di�erent Reynolds number
R and also the e�ect of slip coe�cient on these pro�les are shown in �gures 3, 4
and 6. Domb-Sykes plot (Fig. 2) shows the singularity restricting convergence
of the series representing velocity pro�les.
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VELOCITY PROFILE 
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Figure 2: Domb-Syke plot for velocity pro�les

Figures 3 and 4 show in�uence of the slip velocity on the channel �ow with
suction and injection. The no slip case corresponds to φ = 0. It is observed
that the slip velocity is more sensitive to changes in the slip coe�cient for small
values and seems to approach an asymptotic value for large slip coe�cient, that
is, increasing slip leads to �attening of pro�les and reduced wall shear stresses.
Also, increasing suction results in �atter pro�les and velocity pro�les restricted
to thinner boundary layer. Whereas, �uid injection does not result in marked
changes in the velocity pro�les but decreases the wall shear rate. The in�uence
of normalized slip velocity for various values of R are shown in Figure 5, which
shows Us increases with φ and approaches asymptotic values.

VELOCITY PROFILES FOR DIFFERENT VALUES OF REYNOLD’S NUMBER: (For different φ 
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Figure 3: Velocity pro�les for channel �ow with suction

Malaysian Journal of Mathematical Sciences 433



Ashwini B., N. N. Katagi and A. S. Rai

 

 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1

U
s

λ

Velocity profiles for R=-5 for channel flow

φ=0 φ=0.1 φ=0.2 φ=0.3 φ=0.5

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1

U
s

λ

Velocity profiles for R=-10 for channel flow

φ=0 φ=0.1 φ=0.2 φ=0.3 φ=0.5

Figure 4: Velocity pro�les for channel �ow with injection
 

EFFECT OF φ ON NORMALIZED SLIP VELOCITY FOR DIFFERENT VALUES OF R 
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Figure 6 is a plot of dimensionless transverse velocity with λ, shows the e�ect
of axial slip coe�cient on the mid channel transverse velocity pro�le. Large
suction rate results in linear transverse velocity pro�les whereas injection make
only small deviations in the shape.
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Figure 6: The e�ect of slip coe�cient on dimensionless transverse velocity for Re = 1000

 

PRESSURE GRADIENT 
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Figure 7: Domb-Syke plot for pressure gradient

The coe�cients an of the series (18) represents the pressure gradient P are
decreasing in magnitude, but have no regular sign pattern. Domb-Syke plot
(7) after extrapolation, con�rms the radius of convergence of series (18) to be
R = 12.27, 12.40, 14.24 (with an error of 10−5) for di�erent slip coe�cients
(φ = 0, 0.1, 0.5) respectively. Direct sum of the series is valid only up to R < 12.
We obtained the results of P for su�ciently large R (up to 50) using Padé
approximants (Bender and Orszag (1987)) as compared to earlier �ndings.

Figure 8 shows that the magnitude of pressure gradient P , increases with
x
h for �xed entrance Re = 1000. Inspection of �gure reveals that the values
of P decrease with the in�uence of slip coe�cient φ, at the porous wall which
leads to reduction in the shear stress at the membrane surface. This leads to
the fact that, the e�ect of velocity slip at the porous binding wall is to decrease
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magnitude of the pressure gradient. Another interesting trend in evidence in
the graph is that an increase in R will result in decrease of shear stress which
in-turn reduces P .

 

 

EFFECT OF φ ON AXIAL PRESSURE GRADIENT FOR DIFFERENT R 
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Figure 8: Variation in pressure gradient as a function of slip coe�cient φ

To con�rm certainty, to validate accuracy and e�ciency of the results ob-
tained by Computer extended Series method , the problem is also analyzed by
an elegant homotopy analysis method (HAM) in conjunction with Padé sum to
accelerate convergence of the series. We plot h-curves to �nd the convergence
range and also the rate of approximations for the series representing f ′(0) and
P when R = 0.1, φ = 0 respectively from 10th order HAM approximations.
The range for admissible values of h for di�erent values of R and φ is di�erent.
From the �gure 9 it is observed that series representing f ′(0) and f ′′′(1) are
convergent when −2.2 ≤ h ≤ −0.3.

 
 

Figure 9: h-curves for 10th order approximations
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5. Concluding Remarks

In the present work, we employed two semi-numerical methods, known as
Computer Extended Series method and Homotopy Analysis Method to solve
fourth order non-linear di�erential equation modeling laminar �ow through
porous channels. The e�ect of non-zero tangential slip velocity on velocity �eld
and pressure gradient are analyzed. The study con�rms that the proposed
methods converges to the solution for moderately large values of Reynolds num-
ber as compared to the earlier �ndings. The results obtained were compared
and an excellent agreement was observed.
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